Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Mohammed Naffakh

Mohammed Naffakh

Escuela Técnica Superior de Ingenieros Industriales, Spain

Title: Biopolymer nanocomposites based on poly(hydroxybutyrate-co- hydroxyvalerate) and WS2 inorganic nanotubes

Biography

Biography: Mohammed Naffakh

Abstract

In recent years, special attention has been given to the benefits of polymer nanocomposite technology to improve the inherent properties of biodegradable polymers. These materials are called “bionanocomposites”, and they provide a fascinating interdisciplinary research field that combines materials science, nanotechnology and biological science. The composites based on biodegradable polymers and different nanofillers with varying functionalities can lead to bionanocomposites with applications ranging from environmentally friendly packaging to automotive uses. Along with many interesting nanofillers, inorganic transition metal dichalcogenide materials (TMDCs), such as tungsten and molybdenum disulfides (WS2 and MoS2), are of interest to the scientific community because of their unique layered structure and functional properties, with nano-sized particles tending to exhibit a different set of properties compared to the bulk forms. TMDCs nanostructures can be zero-dimensional (0-D) (nanoparticles), one-dimensional (1-D) (nanotubes) or two-dimensional (2-D) (nanosheets). In particular, the use of environmentally  friendly and biocompatible inorganic fullerene-like nanoparticles (IF-WS2) and nanotubes (INT-WS2) have been shown to offer design, processing, performance and cost advantages when compared to carbon nanotubes, nanoclays or other inorganic nanoparticles, for manufacturing advanced polymer nanocomposites. Incorporating of INT-WS2 into biopolymer can modify the crystallization behavior. The present research continues work in this field and focuses on the use of well-dispersed INT-WS2 for enhancing the processability  and crystallization behaviour of poly(hydroxybutyrate-co- hydroxyvalerate) (PHBV) (Figure 1). In particular, the effects of different INT-WS2 loadings on the isothermal and non-isothermal crystallization behavior of PHBV were studied in detail, using neat PHBV for comparisons